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ABSTRACT 

 Nanomaterials show immense promise for the future in numerous areas of 

application. Properties that are unique from the bulk material and are tunable allow for 

innovation in material design. This thesis will focus on controlling the physical properties 

of core/shell nanostructures to enhance the utility of the materials.   

The first focus is on the impact of different solvent mixtures during the shell 

growth phase of SILAR based core/shell quantum dot synthesis is studied. Gaining 

insight into the mechanism for SILAR growth of core/shell nanoparticles allows 

improved synthetic yields and precursor binding, providing enhanced control to synthesis 

of core/shell nanoparticles. The second focus of this thesis is exploring the use of 

magnetic nanoparticles for magnetic drug targeting for to reduce the negative impact of 

cardiovascular conditions. Magnetic targeting for drug delivery enables increased local 

drug concentration, while minimizing non-specific interactions. In order to be effective 

for magnetic targeting, it must be shown that low magnetic strength is sufficient to 

capture flowing nanoparticles. By demonstrating the binding of a therapeutic agent to the 

surface at medicinal levels, the viability for use as a nanoparticle drug delivery system is 

improved. 
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CHAPTER 1 

INTRODUCTION

1.1 Introduction to quantum dots 

Quantum dots (QDs) are crystalline direct bandgap semiconductor nanoparticles, 

which are typically roughly spherical in shape and have a diameter on the order of 1-10 

nm. The QDs can display properties that are unique from the bulk material, including 

quantum confinement in which the exciton Bohr radius is larger than all three crystal 

dimensions.1 Quantum confinement of the excitons leads to desirable optical properties 

that can be tuned for utilization in lighting applications, photovoltaics, and bioimaging. 

Additionally, a higher bandgap semiconductor shell can be grown on the core, resulting 

in a core/shell heterostructure with increased isolation of the core and enhanced stability. 

When semiconductors absorb light, an electron is excited from the valence band 

to the conduction band, creating a hole in the valence band. This electron-hole pair is 

known as an exciton. The relaxation of the electron will then result in either radiative or 

non-radiative recombination of the electron and hole. In radiative recombination, photons 

are emitted with energies near the bandgap (Eg) of the material. In contrast to bulk 

semiconductors, low dimensional materials, such as quantum dots, have discrete density 

of states and can thus be tuned by altering the size of the material. The size dependence 

of the bandgap absorption and emission makes these materials an attractive target for 

development in a number of industries including QD-based light emitting diodes2,3 and 

fluorescent tags for biological imaging.4,5 
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1.1.1 Synthesis of quantum dots 

In order to take advantage of the size dependent nature of the QDs, the synthesis 

method used must yield particles with a narrow size distribution and well-defined shape. 

The hot-injection method is the most widely used and consists of four stages.6 The first 

involves mixing the two metal precursors at high temperature. The second stage occurs 

by quickly injecting chalcogenide precursors resulting in rapid nucleation. The third stage 

occurs when the nucleation rate has slowed and homogeneous growth of the QDs occurs. 

Finally, when the precursor concentration has decreased, small particles may dissolve and 

be redeposited on larger particles, which is known as Ostwald ripening. This results in an 

increased size distribution of particles. In order to prevent this process, the reaction 

should be quenched, either through lowering the temperature of the reaction or by 

introducing a protecting layer on the surface of the nanocrystals, prior to the ripening 

beginning. 

As a result of an unpassivated surface and trap states, the quantum yield (QY) of 

core-only QDs is poor. Additionally, transference of an electron or a hole to a surface 

trap state is believed to be responsible for intermittency of photoluminescence, known as 

blinking, which poses a challenge to achieving reliable QYs.7 Remediation of this issue 

can be achieved through the isotropic growth of shell material on the core,8 effectively 

isolating the core from the surface trap states, reducing the wave function overlap with 

the surface, and decreasing the likelihood for surface trapping of the carriers.9 Growth of 

thicker shells reduce Auger recombination rates, increasing multiexciton lifetimes and 

emissions, yielding a higher QY.10,11 The lattice mismatch between the core and shell 

material must be minimized to prevent defect formation within the crystal structure, 
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which results in degraded performance. Graded alloy shells12 and the use of materials 

with low lattice mismatch13 have proven to be effective in minimizing defect density. 

Two methods are commonly used for growth of a semiconductor material shell 

over a quantum dot core. The first method employs simultaneous addition of the 

precursors to form the shell. As the precursors used are highly reactive, this synthesis 

method exhibits limited control over the particle shape and a broad size distribution. The 

second method is selective ionic layer adsorption and reaction (SILAR). This method was 

first introduced by the Peng group14 and has since been widely adopted. In contrast to 

simultaneous addition, SILAR introduces one precursor per half-cycle, allowing 

saturation of surface sites before the second precursor is introduced. The use of the 

SILAR technique benefits from greater control over shell thickness by selecting the 

number of addition cycles performed and decreased homogeneous nucleation events by 

eliminating precursor side reactions.15  

 

1.2 Introduction to magnetic nanoparticle targeting 

Magnetic nanoparticles exist in the size regime of less than 100 nanometers and 

have a high surface area to volume ratio.16 In order to obtain desired physical and 

chemical properties in the particle, the core can be composed of numerous materials 

including gold, cobalt, iron oxide, or cadmium selenide. The tunability of the core 

material permits alteration and prioritization of properties, including size, shape, 

magnetic characteristics, biocompatibility, and solubility, to provides improved particles 

for various applications.17 The applications that have been explored include magnetic 



www.manaraa.com

 

4 

resonance imaging (MRI) contrast imaging,18 magnetic hyperthermia,19 magnetic drug 

delivery,20–22 and data storage.23  

While magnetic nanoparticles come in many combinations of materials, 

ferrimagnetic iron oxides, particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are a 

popular core material for biomedical studies. One attractive property of iron oxide 

nanoparticles used for bioapplications is superparamagnetism, resulting in the particles 

often being referred to as superparamagnetic iron oxide nanoparticles (SPIONs). 

Superparamagnetism is typically exhibited in iron oxide particles smaller than 30 nm in 

diameter, allowing the magnetic moments to be flipped randomly by thermal energy, and 

resulting in paramagnetic nature only when a local magnetic field is applied to the 

nanoparticles.16 This selective property leads a lower probability of aggregation of the 

nanoparticles in the bloodstream, as there is no remanent magnetism when a magnetic 

field is not actively being applied. As a softer magnetic material, iron oxide can also be 

magnetized or demagnetized with lower magnetic fields than what is required for harder 

magnetic materials. SPIONs possess a favorable toxicity profile, high magnetic 

susceptibility, and relatively high magnetic saturation, making them favorably suited for 

in vivo studies.16 

 

1.2.1 Nanoparticle synthesis 

The most widely used techniques for synthesis of magnetic nanoparticle include 

microemulsion, thermal decomposition, and coprecipitation techniques. Microemulsion 

syntheses can produce monodisperse particles, but typically have low yields, although 

new techniques have remedied this issue to a degree.24 Many thermal decomposition 
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preparations are energy-intensive and require organic solvents, necessitating further 

processing to be made biocompatible.25 Coprecipitation methods are typically performed 

in aqueous solution at room temperature, which results in increased size distribution and 

low crystallinity.26 It is necessary for the synthesis to produce consistent nanoparticles, 

particularly with respect to SPIONs, as a wide distribution of particle size could lead to 

varied forms of magnetism amongst nanoparticles resulting in undesired magnetic 

characteristics. The most popular preparation method is a thermal technique developed by 

Hyeon et al. that is highly versatile and can form monodisperse nanocrystals in large 

quantities using inexpensive, non-toxic reactants.27 

 

1.2.2 Nanoparticle surface 

While the core material provides base functionality, coating the core with shell 

material, which can be performed in-situ or after synthesis, reduces aggregation of 

particles and can be used to enhance the functionality of the nanoparticles. Shell materials 

such as dextran, poly(ethylene glycol) (PEG), and silica are used to increase stability and 

introduce hydrophilicity to the particle, yielding increased solubility and enhanced 

biocompatibility.28 Zwitterionic ligands bound to the core have also been shown to create 

suitably hydrophilic nanoparticles, while retaining the necessary magnetic properties. 29 

The shell also plays an important role in biodistribution and how quickly the 

nanoparticles are cleared from the body. If the shell increases the hydrodynamic size of 

the nanoparticles above a threshold, the particles will be cleared more quickly through 

biological processes, reducing the availability of particles for the desired applications, 

and the magnetic properties of the cores could be diminished.30 
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Utilizing the characteristics from the core and shell, the nanoparticles can 

passively target an area for drug or MRI contrast agent delivery, employ ligands to attach 

to biological targets, or be used in magnetic targeting to concentrate the nanoparticles in a 

desired zone for drug release.31,32 In order for nanoparticles that are injected into the 

blood stream to be effective for magnetic targeting, enough force must be exerted from a 

magnetic field gradient to overcome the effects of blood flow and pull the nanoparticles 

to the area of interest.33 If the magnetic force is not sufficient to capture the SPIONs, they 

will continue in the bloodstream and be eliminated through non-specific pathways before 

they can accumulate at their targets. 

 

1.3 Thesis overview 

Chapter 2 is focused on understanding the effect of the solvent mixture on the 

growth of core/shell quantum dots using the SILAR technique. The inclusion of three 

different amines in the growth solvent is explored. The tertiary amine shows weaker 

association to the nanoparticle surface compared to the primary and secondary amines. 

Therefore, due to competition with precursors, use of tertiary amines during QD growth 

can increase the quality of the core/shell QDs. 

The feasibility of iron oxide nanoparticles for use as a magnetically targeted drug 

delivery system is explored in Chapter 3. In vitro particle capture trials are performed via 

flow field fractionation on preliminary magnetic iron oxide nanoparticles to show the 

viability of capture by a readily-available magnet without the need for specialty high 

strength magnets. SiO2 nanoparticles coated with poly(methacrylic acid) (PMAA) ligands 

are then used to explore the ability for a representative matrix metalloproteinase inhibitor 
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(MMPI) compound to be adsorbed to a functionalized nanoparticle surface. UV-Vis 

spectroscopy, in conjunction with centrifugation, is performed to determine the amount 

of drug binding occurring on the nanoparticle surface. 
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CHAPTER 2 

 REDUCING COMPETITION BY COORDINATING SOLVENT 

PROMOTES MORPHOLOGICAL CONTROL IN ALTERNATING 

LAYER GROWTH OF CDSE/CDS CORE/SHELL QUANTUM DOTS* 

2.1 Introduction 

The formation of core/shell structures in colloidal semiconductor nanocrystals is 

important in maintaining the spectroscopic properties of colloidal quantum dots (QDs) 

and defining new functions. When using selective ionic layer adsorption and reaction 

(SILAR)-based techniques, conversion of shell precursors to surface-adsorbed 

equivalents should be maximized for effective control of shell growth. Our group has 

previously demonstrated that the commonly used cadmium precursor Cd(oleate)2 has low 

conversion yield when added in monolayer-equivalent quantities during the growth of 

CdSe/CdS core/shell QDs via the SILAR technique.34 The growth solvent could 

potentially play an important role in governing precursor conversion. 

Primary amines have been typically been used as the coordinating solvent for 

nanoparticle growth, with oleylamine commonly used for CdSe QDs growth by 

SILAR.15,34 The role of the primary amine during growth has been well studied, yet 

contradictions have arisen between conclusions, as summarized by Garcia-Rodriguez et

                                                 

* Tan, R.; Shen, Y.; Roberts, S. K.; Gee, M. Y.; Blom, D. A.; Greytak, A. B. Chem. 

Mater., 2015, 27 (21), 7468–7480. Reprinted here with permission of publisher. 
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 al.35 Switching to secondary amines for CdS shell growth on CdSe cores has been 

reported to improve synthetic yield36,37, while secondary and tertiary amines have shown 

improved  size distribution during CdSe core growth.38 One possible mechanism is that 

the reactivity of the Cd precursor was reduced due to the strong coordination of the 

primary amine. Liu’s and Vela’s groups have suggested35,37 that primary amines such as 

oleylamine may stabilize Cd(oleate)2 in solution through the formation of six-coordinate 

complexes. Solution-phase complexes could be sterically restricted in the case of 

secondary or tertiary amines.37 However, it is also known that amines can improve the 

fluorescence quantum yield by coordination to the nanocrystal surface, and it is possible 

that such surface coordination is competing with precursor conversion.39–41 

In this work, we grew CdSe/CdS core/shell quantum dots in solvent mixtures with 

three different representative amines -- primary, secondary, and tertiary -- via a SILAR 

technique. We selected oleylamine (OAM), dioctylamine (DOM), and trihexylamine 

(THM) for our studies. The three amines were chosen to (1) represent 

primary/secondary/tertiary amines, and (2) have similar molecular weight and molar 

volume, so that similar amine:QD ratios (∼50 000:1) could be achieved at similar QD 

concentrations. The course of the growth was monitored by UV−visible absorption and 

photoluminescence (PL) emission spectroscopy. Emission peaks at wavelengths shorter 

than the effective band gap (“blue peaks”) appeared in the PL spectrum when QDs were 

grown in primary amine, suggesting nucleation of small CdS particles as a result of cross-

reaction of the shell precursors as seen previously, and such nucleation was suppressed 

and no CdS particles were present in the QDs grown in tertiary amine. Time-correlated 

single photon counting (TCSPC) measurements indicated shorter average lifetimes and 
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increased rate dispersion in samples prepared with secondary and tertiary amines, when 

compared to oleylamine. This finding indicates a difference in interactions/passivation 

between the different amines and the QD surface. Scanning transmission electron 

microscopy (STEM) proved the yield of the shell was highest when using the tertiary 

amine (trihexylamine) as the growth solvent. We demonstrated that the interaction 

between the solvent molecules and the nanoparticle surface is an issue influencing shell 

growth by SILAR, because the shell precursor must compete with such interactions to 

saturate the surface prior to introduction of the complementary precursor for growth of 

the shell compound. 

 

2.2 Shell growth as monitored by absorption and emission spectroscopy 

During the course of the growth, aliquots with a consistent volume of 50 ± 5 μL 

were drawn and diluted in 2.0 ± 0.2 mL of hexane for monitoring by absorption and PL 

spectroscopy. This method resulted in diluted samples with <25% error in concentration. 

The nominal concentration of core/shell particles in each aliquot can be calculated on the 

basis of the quantity of cores introduced at the start of the reaction; the nominal 

concentration decreases over the course of shell growth due to the increase in total 

volume as shell precursor solutions are introduced. The band-edge absorbance peak of all 

aliquots remained less than 0.1 AU such that little fluorescence light is reabsorbed when 

the samples are excited. Absorption and PL spectra of core/shell particles grown in the 

three amines are shown in Figure 2.1. To facilitate comparison, the absorption and PL 

spectra of successive aliquots have been scaled to compensate for the difference in 

nominal concentration of core/shell particles. In particular, the absorbance and intensity 
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values plotted should be representative of the signals seen at the same QD concentration 

(0.42 μM), with a scaling error of less than 25%. In all three shell growth experiments, 

the absorption spectra indicate a red shift in the lowest-energy (1S) exciton resonance 

observed with increasing shell thickness, accompanied by an increase in the height of the 

scaled 1S absorbance. An increase in the 1S molar extinction coefficient with increasing 

size of CdSe QDs has been described and modeled by Jasieniak et al.42 The trend for the 

same model applied to the evolution of the 1S absorbance in the CdSe/CdS core/shell 

particles is indicated by the black curves in Figure 2.1A−C, with 25% error indicated by 

dashed lines.  

Figure 2.1D−F shows that in all three growths, the PL emission intensity of 

CdSe/CdS core/shell particles continuously increased with increasing CdS shell 

thickness. This is a result of an increasing quantum yield as well as an increasing 

excitation rate at the same concentration due to enhanced absorption at short wavelengths 

because of the CdS shell. 

Despite superficially similar absorption spectra and band-edge PL spectra among 

the three samples, a close examination of the emission spectra reveals a PL peak 

appearing between 400 and 500 nm (“blue peak”) that is present in the oleylamine case 

(Figure 2.1D), greatly diminished (∼50× less intense) with dioctylamine, and nearly 

absent with trihexylamine. The blue peaks are absent prior to introduction of shell 

precursors, are centered at wavelengths shorter than the emission of the CdSe cores used, 

and shift to longer wavelengths as additional shell precursors are introduced. These 

characteristics are all consistent with the appearance of a CdS nanoparticle side product. 

We have previously shown that nucleation of CdS nanoparticles can occur when growing 
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CdSe/CdS core/shell QDs via the SILAR technique under 1 ML equivalent dose per 

cycle.34 The wavelengths of the blue peaks fall within the range of emissions for CdS 

nanoparticles with diameters of 3.5−4.5 nm.43,44 

 

Figure 2.1 Scaled absorption and emission spectra over the course of CdSe/CdS 

core/shell QDs growth in three amines. (A,D) CdSe/CdS_OAM grown in oleylamine; 

(B,E) CdSe/CdS_DOM grown in dioctylamine; (C,F) CdSe/CdS_THM grown in 

trihexylamine. Absorptions and emissions are normalized to the concentration of QDs in 

each aliquot, so that all of the absorption and emission represent the absorption and 

intensity of the same amount of QDs; the dashed lines represent the upper and lower 

bands of 25% error for the QD concentration in each aliquot. The insets zoomed in the 

region of emission where “blue peaks” appeared for CdSe/CdS_OAM and 

CdSe/CdS_DOM, and no “blue peaks” in CdSe/ CdS_THM. Copyright 2015 American 

Chemical Society. 

 

2.3 Characterization of the Presence/Absence of Nucleation by 

Photoluminescence Excitation Spectroscopy 

 

We conducted photoluminescence excitation (PLE) scans on all three core/shell 

samples to characterize the contribution of CdS nanoparticle nucleation to the observed 

ensemble absorption spectra. The PLE spectrum measures the emission intensity as a 

function of excitation wavelength. For a QD in which all excitations are presumed to 
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rapidly thermalize to the band-edge exciton states, the PLE spectrum nominally contains 

the same information as the absorption spectrum. However, disconnected particles of the 

shell material as well as hot-carrier recombination processes will lead to a diminished 

PLE spectrum as compared to the absorption spectrum. Technically, the PLE signal 

should be compared to the number of photons absorbed by the sample at each 

wavelength, which is proportional to 1 − T where T is the optical transmittance.45 The 

absorbance A = −log(T) is described accurately by 1 – T (within 10%) only when A < 

0.1. To further minimize light attenuation considerations,46 the samples were diluted by 

hexane so that in all cases the absorbance was <0.2 at wavelengths longer than 300 nm.45 

 

Figure 2.2 (A−C) Photoluminescence excitation (PLE) scans at emission maximum 

(@600 nm) for CdSe/CdS core/shell particles grown in three amines are shown as red 

dashed lines. PLE, absorption (black solid lines), and 1 − T (black dashed lines) are 

shown and normalized to the bandgap absorption peak for comparison. Normalized 

emissions are shown as a blue solid line. The insets show PLE and 1 − T at the bandgap. 

(D−F) Comparison of PLE scans at emission maximum (@600 nm, red dashed lines) and 

PLE scans at “blue peak” maximum (@478 nm, purple solid lines) for three core/shell 

particle samples. Copyright 2015 American Chemical Society. 
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In Figure 2.2A−C, the excitation wavelength was scanned from 300 to 640 nm, 

which covers the absorption range for typical CdS and CdSe nanoparticles, while the 

emission wavelength was set at the band-edge PL emission maximum (PLE@600 nm). 

At long wavelengths close to the band edge, the PLE line shape matches 1 − T closely as 

expected for the simple picture of a QD with energy-independent QY. Consequently, it is 

possible to scale the 1 − T and PLE signals such that they are superimposed in this region 

(Figure 2.2A−C, insets, with the lowest-energy exciton peak set at 1 on the vertical 

scale), so that differences at higher energies (shorter wavelengths) can be examined. For 

comparison, the raw absorbance signal A is plotted as well. At shorter wavelengths, the 

normalized 1 − T signal greatly exceeds the PLE trace in all samples, indicating a lower 

ensemble QY for excitation at high energies. Comparing the three samples, it is clear that 

in the low wavelength region (300−500 nm), the absorbance and 1 – T are the largest for 

CdSe/CdS_OAM, then CdSe/CdS_DOM, with CdSe/CdS_THM showing the lowest 

values, while PLEs@600 nm showed negligible differences. These results suggest that 

the additional absorbance seen in CdSe/CdS_OAM at shorter wavelengths does not 

contribute to band-edge emission. We propose that the additional absorbance in 

CdSe/CdS_OAM is contributed by the CdS nanoparticles that are responsible for blue 

emission peaks in the PL spectra. PLE scans with the emission wavelength set to 478 nm 

(PLE@478 nm, Figure 2.2D,E) showed a substantial signal from 300 to 480 nm for 

CdSe/CdS_OAM (Figure 2.2D) that was absent for CdSe/CdS_DOM and 

CdSe/CdS_THM. This signal displayed peaks (blue arrows in Figure 2.2D) resembling 

excitonic features of typical semiconductor nanoparticles as a result of quantum 
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confinement. The above observations are consistent with the optical properties expected 

for CdS nanoparticles. 

Additional insight on the behavior of the samples under excitation at low 

wavelengths can be gained by subtracting the normalized PLE@600 nm spectrum from 

normalized 1 − T. The difference represents photons being absorbed by the sample that 

do not lead to emission at 600 nm. The difference signals are overlaid in Figure 2.3A on 

a scale relative to the PLE signal at the lowest energy exciton that allows the values for 

the three samples to be directly compared. In all cases, a large difference signal grows in 

at wavelengths <500 nm. There are two possible contributions to the difference signals 

shown: first, inefficient relaxation of delocalized, higher-energy excited states to the 

band-edge exciton localized at the QD core; and second, photon absorption by detached 

CdS nanoparticles. The latter of these contributions should mimic the absorption 

spectrum of CdS QDs. Figure 2.3B shows that the profile of the 1 – T difference 

spectrum for CdSe/CdS_OAM differs from that of the other two. If the spectra are 

normalized at a wavelength near the onset of the excess 1 − T signal (Figure 2.3C), it is 

clear that the CdSe/CdS_OAM sample displays an additional contribution at shorter 

wavelengths with excitonic features that closely resemble what is expected for CdS 

QDs.43,44 The remaining contribution that is common to all samples (although differing in 

amplitude) could be evidence of a rapid nonradiative trapping pathway for hot carriers.  

Providing excitation energy above the band gap results in a higher likelihood of accessing 

nonemissive trap states, resulting in a reduced quantum yield. Excitation energy 

dependence (EED) in CdSe and core/shell QDs has been observed previously.47–49 

Precautions should be taken to avoid the effects of EED when examining QDs in future 
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studies. Additional understanding of EED could provide insight into improved 

methodology. 

 

Figure 2.3 (A) Comparison of (1 − T) − PLE for 600 nm emission for CdSe/CdS 

core/shell particles grown in the three amines. (B) Curves in (A) normalized at the first 

peak of sample CdSe/CdS_OAM (blue arrow). (C) Curves in (A) normalized close to the 

signal onset (blue arrow). Copyright 2015 American Chemical Society. 

 

2.4 Amine influence on particle photoluminescence lifetime 

We recorded time-resolved PL traces of aliquots drawn over the course of shell 

growth in the three amine solvents to characterize the average decay rate and decay rate 

dispersion in the samples. The amine solvent can act as a ligand for the QD surface and 

as such could inhibit the binding of shell growth precursors, in particular Cd(oleate)2. We 

have shown previously that association of oleylamine to the surface of purified CdSe/CdS 

core/shell QDs increases the ensemble QY, increases the average PL lifetime, and 
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decreases rate dispersion.39 Comparison of the PL decay traces of CdSe QDs and 

core/shell QDs in the presence of the three amine solvents could thus serve as a proxy 

measurement for ligand interactions with the QD surface that influence growth. 

Additionally, as shell growth proceeds, the solvent may modulate polydispersity and/or 

the formation of crystal defects during shell growth, which would affect radiative and 

nonradiative decay rates, respectively. 

 

Figure 2.4 (A−C) Time-resolved PL monitored over the course of CdSe/CdS core/shell 

QDs growth in three amines. (D−F) Distribution of lifetimes for cores (top) and core/shell 

particles with 1 ML equivalent shell (bottom) in three amines, as well as the relative 

amplitudes for each exponential component (blue squares, area represents wt Ai for the 

ith component). Support plane analysis is applied to determine the uncertainties in the 

lifetimes of each fit component. Blue dashed line indicates 90% confidence limit for F 

statistic. Copyright 2015 American Chemical Society. 

 

Figure 2.4A−C shows the PL decays for each sample just prior to introduction of 

shell precursors and after each successive complete ML equivalent of growth. To isolate 

the influence of the amine solvents as ligands on the luminescence kinetics, we can focus 

on the traces for the cores (red traces). After being heated in the shell growth solvent, but 

prior to introduction of shell precursors, the amplitude average lifetime was greatest for 

oleylamine: τavg_OAM = 27.7 ns > τavg_DOM = 22.7 ns > τavg_THM = 12.6 ns. All samples 
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showed multiexponential decays. For quantitative analysis of lifetimes and decay rate 

dispersion, experimental curves were fit with a sum of exponential components 

reconvoluted with the instrument response function. At least three exponential 

components were required for a reasonably good fit (𝜒𝑅
2 < 1.5). In each case, three 

component fits returned an intermediate lifetime component (τ2) on the order of the 

radiative lifetime, a short-lifetime component (τ1), and a long lifetime component (τ3) that 

is likely associated with a trapping/detrapping mechanism.50 To characterize the 

uncertainty in the lifetime values, we examined how 𝜒𝑅
2 changes when one parameter is 

varied and the others are reoptimized, also called support plane analysis51 (Figure 

2.4D−F). For each decay, we found the lifetimes to be well separated from each other at a 

90% confidence limit. The shorter average lifetimes for dioctylamine and trihexylamine 

samples are driven both by a shift in τ1 and τ2 to smaller values and by a shift in 

amplitude toward the short-lifetime component (Figure 2.4D−F, top), indicative of a 

larger fraction of the ensemble residing in a state with a large nonradiative decay rate. 

These observations are consistent with a stronger binding interaction of oleylamine with 

the QD surface, resulting in better electronic passivation of the QD surface, but also 

potentially interfering with precursor conversion during shell growth. 

For further core/shell growth in all three amines, the relative amplitude for short-

lifetime (wt A1) and long-lifetime (wt A3) components continuously decreased, while the 

relative amplitude for the intermediate component (wt A2) increased greatly only after 1 

ML (Figure 2.4D−F, bottom). For CdSe/CdS_OAM, the short lifetime component was 

completely eliminated after 2 ML of shell. The amplitude average lifetimes kept 

increasing from 20.76 to 27.48 ns (and only require two exponential components to fit the 
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decay). For CdSe/CdS_DOM, the short lifetime component disappeared after 4 ML of 

shell, with the amplitude average lifetimes increasing from 19.36 to 26.53 ns. However, 

for CdSe/CdS_THM, the short lifetime component existed even after 6 ML of shell 

growth, and the amplitude average lifetimes remained at 20−23 ns over the course of the 

growth. This difference in average lifetime at the conclusion of 6 ML is primarily 

associated with the larger amplitude and smaller lifetime value of the τ1 component; the 

value of τ2 is nearly identical across the three samples. 

Shell growth introduces an electronic barrier (at least for holes) between the core 

and surface. In our shell growth method, TOP is a component of the shell precursor 

solution; TOP binds exothermically to the QD surface and is known to strongly 

regenerate QY in purified samples.39 Nonetheless, the difference in average lifetime and 

rate dispersion among the three amine solvents persists through 6 ML of shell growth, 

suggesting that effects of ligand occupation of the surface on precursor conversion may 

likewise persist through the course of shell growth in the presence of TOP. 

 

2.5 STEM images of core/shell nanoparticles 

Figure 2.5 shows the STEM images and radius distribution histograms for CdSe 

cores as well as the three core/shell products. The radius histograms are determined by 

analysis of STEM images of the same magnification at 6−7 randomly selected regions; N 

is the number of particles analyzed. In comparing STEM images of Figure 2.5A-D and 

the radius histograms of Figure 2.5E−H, the differences in particle sizes and 

distributions are clearly displayed. We characterize the average radius and peak radius for 

particles; the average radius is obtained directly from the distribution (including small 
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particles), while the peak radius is the center of a Gaussian fit (red curve, Figure 

2.5E−H) to the distribution and represents a characteristic radius for core/shell particles 

in the sample. 

 

Figure 2.5 STEM images and radius histograms for CdSe cores (A,E) and core/shell 

samples CdSe/CdS_OAM (B,F), CdSe/CdS_DOM (C,G), and CdSe/CdS_THM (D,H). 

The histograms are fitted by Gaussian functions (red curves, E−H) to determine the peak 

radius; the fwhm is indicated by blue arrows. Copyright 2015 American Chemical 

Society. 

 

A majority of particles in the core/shell samples showed a radius larger than that 

of the cores and commensurate with shell growth; however, CdSe/CdS_DOM (Figure 

2.5C) and CdSe/CdS_THM (Figure 2.5D) showed larger average and peak radius as 

compared to CdSe/CdS_OAM (Figure 2.5B). Additionally, both CdSe/CdS_DOM and 

CdSe/CdS_THM showed narrower size distributions and showed particles with more 

uniform shapes. Inspection of the STEM images reveals the presence of a significant 

number of particles smaller than the CdSe cores in CdSe/CdS_OAM. Although the 

STEM images cannot clearly resolve CdS from CdSe, we can assign the smallest 

particles as a CdS nanoparticle side product. These small particles contribute to the 



www.manaraa.com

 

21 

smaller average radius in this sample. The peak radius primarily describes the core/shell 

product; it is the smallest in CdSe/CdS_OAM as well, indicative of thinner CdS shells 

due to loss of material to the side product. At the same time, the distribution of radius for 

CdSe/CdS_OAM (fwhm = 0.93 nm) is broader than that for CdSe/CdS_DOM (fwhm = 

0.74 nm) and CdSe/CdS_THM (fwhm = 0.43 nm). Core/shell particles growing in 

trihexylamine maintained a very narrow size distribution, nearly as good as the cores 

(fwhm = 0.30 nm), although a small fraction of particles with radius down to 2.5 nm 

(Figure 2.5H) remained present.  

The STEM results confirm that the more highly substituted amines dioctylamine 

and especially trihexylamine were effective in suppressing the nucleation of small 

particles during shell growth, and the observation of small particles in the CdSe/ 

CdS_OAM and CdSe/CdS_DOM samples corroborates the assignment of the blue PL 

peaks as radiative recombination from CdS nanoparticles. Examination of the shapes of 

nanocrystals in the three core/shell samples appears to show greater roundness in 

CdSe/CdS_DOM and CdSe/CdS_THM, suggesting that conditions that suppress 

nucleation also help to enforce isotropic shell growth. High magnification STEM images 

in Figure 2.6 reveals the greater roundness observed in highly substituted amines 

syntheses. 
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Figure 2.6 High magnification STEM images for CdSe cores, and for CdSe/CdS_OAM, 

CdSe/CdS_DOM, and CdSe/CdS_THM. Panels E,F reveal particles in 

CdSe/CdS_OAM with sizes smaller than is characteristic of the CdSe cores (A,B). 

Higher magnification images (G,H and below) reveal un-spherical shapes. Compared 

with CdSe/CdS_OAM, CdSe/CdS_DOM and CdSe/CdS_THM particles are more 

uniform in shape have narrower size distributions. Copyright 2015 American Chemical 

Society. 
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2.6 Conclusion 

We have confirmed that replacing oleylamine with a secondary amine, 

dioctylamine, suppresses nucleation and improves core/shell growth, and we have shown 

that moving to a tertiary amine, trihexylamine, is even more effective. The use of time-

resolved PL has shown that more highly substituted amines bind less strongly to the 

surface of CdSe QDs, permitting a greater precursor conversion. We can also conclude 

that oleylamine effectively competes with the precursor Cd(oleate)2 for occupation of 

nanocrystal surface sites, leading to a significant amount of cross-reaction and nucleation 

of CdS particles during CdS shell growth by SILAR.  

 

2.7 Experimental Section 

Materials: The following chemicals were used as received. Cadmium oxide 

(CdO; 99.999%), trioctylphosphine (TOP; 97%), and trioctylphosphine oxide (TOPO; 

99%) were purchased from Strem Chemicals. Oleic acid (OA; 99%), 1-octadecene (ODE; 

90% technical grade), 1-tetradecylphosphonic acid (TDPA; 98%), and Se (99.999%) 

were purchased from Alfa Aesar. Di-n-octylamine, 98% (LOT:10178704) and Tri-n-

hexylamine, 97% (LOT:G18S028) are purchased from Alfa Aesar. Decylamine (95%) 

was purchased from Sigma Aldrich. Oleylamine (80-90%) and bis(trimethylsilyl) sulfide 

((TMS)2S; 95%) were purchased from Acros Organics. 200 proof ethyl alcohol (ethanol) 

was obtained from Decon Laboratories, Inc. Acetone (99.9%) was purchased from VWR.  

Ethanol (99.9%) was purchased from Fisher Scientific. TOPSe (2.2 M) was prepared by 

dissolving Se in TOP. A stock solution of Cd(oleate)2 (0.2 M) in ODE was prepared by 

heating CdO in ODE with 2.2 equivalents of oleic acid at 260 °C under nitrogen, 
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followed by degassing under vacuum at 100 °C for 20 min. The sulfur precursor was 

0.1 M solution of (TMS)2S dissolved in TOP. Nanocrystal core and shell growth was 

carried out under nitrogen (N2) using Schlenk line techniques; air-sensitive reagents were 

prepared in a nitrogen filled glovebox. 

Optical Spectroscopy: The optical absorption spectrum was recorded using a 

Thermo Scientific Evolution Array UV−visible spectrophotometer with hexane as the 

solvent as well as the blank in a 1 cm path quartz cuvette. Routine emission spectra were 

recorded by an Ocean Optics USB 4000 spectrometer under ∼365 nm excitation. 

Synthesis of CdSe Cores: A hot-injection technique was applied for synthesis of 

CdSe nanocrystals (NCs) cores.52 For a representative synthetic route, CdO (0.12 g) was 

heated with TDPA (0.5500 g) at 330°C in a solvent TOP (6 ml) and TOPO (6 g) under 

nitrogen flow until the solution became colorless. Following removal of evolved H2O 

under vacuum at 130°C, the solution was heated again to 360°C under nitrogen. As-

prepared TOPSe (1.3 mL) was injected rapidly into the reaction pot, which was 

immediately allowed to cool down to room temperature and stored as a yellow waxy 

solid. The Cd:TDPA:Se molar ratio is 1:2:3. The core radius was estimated by a 

calibration curve52,53 describing the radius as a function of the position of the lowest-

energy absorption peak. One batch of cores provided sufficient material for several 

core/shell growth experiments; all core/shell particles were made based on the CdSe QD 

cores taken from the same batch. 

Synthesis of Core/Shell Nanoparticles in Different Amines: The method for 

CdSe/CdS core/shell particle growth was modified from our previous work.34,52 The 

difference was switching different types of amines (oleylamine, dioctylamine, 
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trihexylamine) in the solvent mixture. The Cd precursor was prepared by diluting 

Cd(oleate)2 stock solution in a solvent of 50:50 ODE and TOP with two equivalents of 

the same amine in the solvent mixture (vs. Cd) added to yield a Cd concentration of 

0.1 M.; The sulfur precursor was 0.1 M solution of (TMS)2S dissolved in TOP. The CdS 

shell was grown by alternatively introducing Cd & sulfur precursors into the reaction 

flask, 1 ML eq. of precursors added per cycle, and forming 6 ML of CdS shell in total 

after six cycles. Reaction progress was monitored by periodically withdrawing a small 

aliquot of a measured volume (typically 50 μL) from the reaction flask and diluting it in 

hexanes at room temperature; these aliquots were analyzed for UV-vis absorption and 

fluorescence emission in hexanes solution. 

Time-Resolved Photoluminescence Measurement: The PL decays of QDs in 

hexane were collected in front-face mode with 1 cm quartz cuvette in a lifetime 

spectrometer (Edinburgh Mini-τ) equipped with a 368 nm picosecond-pulsed-light-

emitting diode. A stirring stage was set under the Mini-τ, and a mini stir bar was placed 

in the cuvette to stir the QD solution to avoid accumulation of photoproducts during the 

measurement. The instrument response function (IRF) is recorded using Rayleigh 

scattering of pure water. 

Scanning Transmission Electron Microscopy Imaging: After purification, the 

CdSe or CdSe/CdS core/shell QDs were brought into hexane to form a dilute solution 

(1.1 μM), one drop of the solution was drop-casted on a clean TEM grid (400 mesh Cu 

grid with ultrathin carbon support film, Type-A, Ted Pella, Inc.) and pumped dry under 

vacuum for 2 hours. The STEM samples were imaged by JEOL 2100F 200 kV FEG-

STEM/TEM equipped with a CEOS CS corrector on the illumination system. Prior to 
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high magnification observation, a large specimen area was pre-irradiated with electrons 

for 10 minutes to polymerize surface hydrocarbons and therefore prevent their diffusion 

to the focused probe. High angle annular dark-field (HAADF) STEM images were 

acquired on a Fischione Model 3000 HAADF. A pixel dwell time of 16 µs was chosen. 
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CHAPTER 3 

MAGNETIC NANOPARTICLE TARGETING

3.1 Introduction 

Nanomaterials for biomedical use have been increasingly explored in recent 

years, due to their promise for superior therapeutic results. Specifically, magnetic 

nanoparticles have been explored in a medical context for numerous applications, 

including for magnetic drug targeting in cancerous tumors.17 Yet despite hundreds of 

thousands of Americans suffering myocardial infarctions (heart attacks) every year, the 

focus of these research efforts has largely been placed on other medical issues.  

By concentrating on effective cardiovascular delivery methods, improved 

treatment can be achieved for those afflicted with cardiovascular maladies. Therapeutic 

agents have been identified for these conditions, but adverse effects and inability to reach 

effective local dosage has resulted in a lack of options for treatment. The creation of 

nanoparticles that enable the binding of pharmacological agents to the surface, coupled 

with retention of the magnetic properties, would be a boon to the current issue plaguing 

potential treatments. Medicine-laden magnetic nanoparticles could be administered 

intravenously, concentrated in the effected region via a local magnetic field, allowing the 

payload to be released and creating an area of increased dosage, thereby reducing the 

amount of free drug required to have a beneficial effect while limiting the adverse effects 

on the patient.  
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The Benicewicz group has previously developed a method to utilizing reversible 

addition fragmentation chain transfer (RAFT) polymerization of methacrylic acid on the 

surface of Fe3O4/SiO2 nanoparticles.54 Benzylpenicillin, Figure 3.1, was then physically 

bound to the surface of the grafted nanoparticles and disk diffusion assays demonstrated 

an increased anti-bacterial response, due to an increased localized concentration of 

benzylpenicillin. Using the surface preparation established the aforementioned work, we 

explored the binding of a representative medicinal compound to nanoparticles. 

In this work, we demonstrated that capture of magnetite nanoparticles as prepared 

by the Benicewicz group (Figure 3.2) is possible in vitro under biological flow 

conditions. As the nanoparticles have a shell and additional ligands on the surface, it is 

important to verify that the particles retained their superparamagnetic nature and that a 

relatively low magnetic strength was sufficient for capture of the particles. Exploration of 

the adsorption of a representative drug (Figure 3.3) compound to the nanoparticle in 

buffered solutions, as well as DI H2O, was performed and monitored using UV-visible 

absorption spectroscopy. 

 

Figure 3.1 Chemical structure of benzylpenicillin. 



www.manaraa.com

 

29 

 

Figure 3.2 Fe3O4/SiO2/PMAA nanoparticle structure 

 

 

Figure 3.3 Chemical structure of drug compound PD166793. 

 

3.2 In Vitro Magnetite Particle Capture 

Preliminary experiments have been performed on magnetite (Fe3O4) nanoparticles 

with a shell of SiO2 and grafted with poly(methacrylic acid) (PMAA). To test initial 

feasibility of nanoparticle capture by a magnetic field, a magnet was placed on the 

surface of plastic tubing and a solution of nanoparticles in water was flowed through the 

tube using an automated syringe pump, a method which has previously been used to test 

the capture of magnetic particles.32 In order to determine the percentage of total particles 
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captured by the magnet, an amount of solution was first flowed with no magnet being 

present and the solution was captured for analysis. The same amount of solution was 

again flowed, but with a magnet placed against the surface of the tube to capture the 

nanoparticles, and the solution was captured. The magnet was then removed from the 

surface of the tube and the final portion was flowed and captured, which should contain 

the initial concentration of particles in the solution in addition to the particles that had 

previously been captured in the tube. The captured aliquots were analyzed using UV/Vis 

spectroscopy. 

  

Figure 3.4 Fe3O4/SiO2/PMAA SPIONs captured in 0.6 mm inner diameter tube at 4 

mm/sec flow rate. 

 

Figure 3.5 Absorption spectrum of 4 mm/s flow rate in 0.6 mm inner diameter tube. 
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Figure 3.6 Fe3O4/SiO2/PMAA SPIONs captured in 0.6 mm inner diameter tube at 20 

mm/sec flow rate. 
 

Figure 3.7 Absorption spectrum of 20 mm/s flow rate in 0.6 mm inner diameter tube.  

 

Analysis of the UV-Vis spectrum (Figure 3.5) for the 4 mm/s at 50 µg iron 

oxide/mL trial revealed a 17.7% increase in signal at 350 nm between the first run of the 

solution with no magnet present and the third run. The increase was expected due to the 

additional particles that should be present in the solution. However, for the 20 mm/s flow 

rate at 50 µg of iron oxide/mL, the spectrum (Figure 3.7) showed a decrease from the 

initial run to the third run, even though captured particles were visibly evident (Figures 

3.4 and 3.6) in the tube during the experiment. These inconsistent results indicate that 

further verification of sources of error is necessary. 
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3.3 Binding to SiO2 Nanoparticles 

In order to test the feasibility of binding for the representative MMP inhibitor, 

PD166793, analogous silica nanoparticles coated with PMAA were used in place of 

magnetic nanoparticles. The binding trials were run in various solutions to explore the 

effect of pH and salt concentration on the ability to bind. Detailed procedures are 

described in the experimental section. Figure 3.8 and Figure 3.9 show that the drug does 

not bind in 50% PBS or acetate buffers, respectively. Figure 3.10 shows peaks after 

centrifugation in DI water that appear around 273 nm, indicating that drug compound is 

present in the retentate and presumably bound to the silica nanoparticles.  

By varying the nominal drug concentration, as shown in Figure 3.11, we were 

able to examine if the amount of drug was limiting the signal being seen in the absorption 

spectra, as well as if drug binding would scale as the amount of available drug increased 

while holding the concentration of particles consistent. Figure 3.12 has the same 

variation in drug concentration, but double the nominal nanoparticle concentration. As 

the drug concentration is increased, the ratio of the amount of bound drug vs. the total 

amount of drug available increases indicating that the drug appears to bind more 

effectively at higher concentrations. However, the bound drug per nominal nanoparticle 

seems to scale linearly with respect to drug concentration.  
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Figure 3.8 Absorption spectrum of 2.5 mg/mL Si NP with 12.5 µg/mL drug in PBS 

buffer. 
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Figure 3.9 Absorption spectrum of 2.5 mg/mL Si NP with 12.5 µg/mL drug in acetate 

buffer. 
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Figure 3.10 Absorption spectrum of 2.5 mg/mL Si NP with 12.5 µg/mL drug in DI H2O. 
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Figure 3.11 Absorption spectrum of 2.5 mg/mL Si NP with varied drug concentration in 

DI H2O. 
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Figure 3.12 Absorption spectrum of 5 mg/mL Si NP with varied drug concentration in 

DI H2O. 

 

We have seen that the drug compound PD166793 is fluorescent, as shown in 

Figure 3.13. The ability to use fluorescent anisotropy would allow us to better observe 

the extent of drug binding to the nanoparticles, while providing insight into the binding 

kinetics occurring, as it could indicate a dynamic binding equilibrium in which the drug 

dissociates within the timescale of the centrifugation, when the free drug concentration is 

reduced. By binding to the nanoparticles, the anisotropy value should increase due to the 

impeded rotation of the particle in situ. 
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Figure 3.13 Fluorescence spectrum of PD166793 with peak at 330 nm. 

 

3.4 Conclusion 

Through flow field fractionation, we have shown that we are able to capture the 

nanoparticles in conditions similar to biological applications. While the capture was 

visibly evident within the tubes, a technique other than absorption spectroscopy might 

prove beneficial to accurately measure the amount captured. The representative drug 

compound binds to the PMAA SiO2 nanoparticles in DI H2O, as seen in UV-Vis 

absorption spectra. However, it appears that the addition of salts in the form of buffer 

solution prevents the drug from binding. In order to better understand the binding kinetics 

of the drug to nanoparticle, fluorescence anisotropy measurements could be utilized. 
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3.5 Experimental Section 

Materials: The following chemicals were used as received. PD166793 was 

purchased from Sigma-Aldrich. Dimethyl sulfoxide (DMSO) was purchased from VWR. 

Preparation of Fe3O4/SiO2 Nanoparticles: The Fe3O4/SiO2 nanoparticles were 

synthesized by students from Dr. Brian Benicewicz’s group at University of South 

Carolina. The synthesis method has been previously published.54 The nanoparticles were 

received with dimethylformamide (DMF) as the solvent. In order to mimic biological 

conditions, they were transferred into water as follows: An amount of original solution 

was taken and placed in a 7 mL vial. A magnet was then placed near the vial wall and left 

to sit for several hours. After the nanoparticles collected near the magnet and the rest of 

the solution had turned clear, the magnet was held in place and the DMF was poured off. 

The particles were then redissolved with water to give the desired concentration. 

Magnetic Capture: The necessary amount of solution was taken into a 20 mL 

syringe and the needle was switched to a blunted needle with tubing 20 mm in length and 

0.64 mm in diameter. Excess air was expelled from the syringe, needle, and tube and the 

syringe set-up was placed in the programmable syringe pump (New Era Pump Systems 

Inc.). The previously made program, based on the desired flow rate, was run. Three 

aliquots were collected for each trial: 1) Initial solution with no magnet in place. 2) Initial 

solution with NdFeB magnet (grade N52, 5/16" dia. x 1/4" thick, surface field: 6275 

Gauss) in place for particle capture. 3) No magnet in place, resulting in initial solution 

and additional captured particles in aliquot. Each aliquot then underwent UV-Vis 
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characterization using a Thermo Scientific Evolution Array UV−visible 

spectrophotometer as well as a blank in a 1 cm path quartz cuvette. 

Drug Binding to SiO2 Nanoparticles: The PMAA grafted SiO2 nanoparticles 

were synthesized by Yang Zheng from Dr. Brian Benicewicz’s group at University of 

South Carolina. Stock solutions (100 mg/mL) of the drug compound (PD166793) were 

prepared in dimethyl sulfoxide (DMSO). To complex the drug to the nanoparticles, the 

drug compound was added to a vial containing nanoparticles and either buffer or DI H2O 

and stirred for several hours. Control trials were performed by omitting the nanoparticles 

from the solution. Each trial had the same centrifugation process: 1) 2 mL of prepared 

drug solution added to Amicon Ultra-4 centrifugal filter tubes 2) 2 mL of corresponding 

solvent added to tubes 3) Centrifuge at 6236 RPM for 5 minutes 4) Collected eluent and 

dilute retentate to 4 mL 5) Step 3 was repeated, the eluent was collected, and the 

complexed samples were extracted from the centrifugal filters and diluted (usually 2 mL) 

into the corresponding solvent at room temperature. The optical absorption spectra were 

recorded using a Thermo Scientific Evolution Array UV−visible spectrophotometer. 
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